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Abstract
The eigenvalues of the quartic anharmonic oscillator as functions of the
anharmonicity constant satisfy a once-subtracted dispersion relation. In turn,
this dispersion relation is driven by the purely imaginary discontinuity of the
eigenvalues across the negative real axis. In this paper we calculate explicitly
the asymptotic expansion of this discontinuity up to second-exponentially-small
order.

PACS numbers: 03.65.Sq, 02.30.Gp, 02.60.−x

1. Introduction

There has been increasing interest of the mathematical physics community in the derivation
and interpretation of asymptotic expansions that take into account the exponentially small
terms sometimes neglected by the Poincaré definition of asymptotic power series [1]. In the
companion paper [2] we study the derivation of the so-called hyperasymptotic expansions
for the eigenvalues of the anharmonic oscillator. Such expansions differ from ordinary
asymptotics by considering the global behaviour of the progenitor function. The result is
a systematic algorithm to obtain a uniform sequence of exponentially accurate expansions
valid over increasingly larger ranges of the asymptotic parameter.

To date, hyperasymptotics has been performed for the solutions of certain classes of
differential equations [3–5], but not for individual eigenvalues. Furthermore, the study of
anharmonic eigenvalues illustrates an extension of hyperasymptotics to functions which may
not have an explicit integral representation, but instead satisfy a dispersion relation. As we
discuss in detail in [2], there is no known integral representation for the eigenvalues of this
anharmonic oscillator. However, if we first subtract the unperturbed (harmonic) eigenvalue
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E(0)
n = n + 1/2 from the anharmonic eigenvalue En(g), the latter can be expressed as a

‘once-subtracted dispersion relation’ [6, 7] in the coupling constant g,

En(g) = E(0)
n +

(−g)
2π i

∫ ∞

0

�En(z)

z(z + g)
dz (1)

where

�En(z) ≡ En(e
−iπz)− En(e

+iπz) (2)

denotes the purely imaginary discontinuity of the eigenvalue En(g) across the negative
coupling-constant axis. Inserting the geometric sum

(−g)
z(z + g)

= − g

z2
+
g2

z3
− · · · + (−1)N0−1 g

N0−1

zN0
+ (−1)N0

gN0

zN0(z + g)
(3)

into the dispersion relation (1) gives rise to an exact expression for the Rayleigh–Schrödinger
(RS) partial sum with remainder

En(g) =
N0−1∑
j=0

E(j)
n gj + Rn(N0, g) (4)

Rn(N0, g) = (−1)N0gN0

2π i

∫ ∞

0

z−N0

z + g
�En(z) dz. (5)

By simply dropping the remainderRn(N0, g) in equation (4) we would just recover the standard
RS asymptotic power series, but by a suitable recursive procedure that takes into account the
analytic properties of the discontinuity �En(z), we are led to the systematic sequence of
hyperasymptotic expansions previously mentioned.

Two ingredients are required to generate a hyperasymptotic expansion: the first is the
sequence of local expansions about the discontinuities in the dispersion relation of a particular
problem; the second is the recursive insertion, manipulation and evaluation of these expansions
into the dispersion relation. (The latter procedure is generic.)

The purpose of the present paper is therefore to discuss the analytic properties and
to calculate explicitly the asymptotic expansion of the discontinuity �En(z) up to second-
exponentially-small order for the particular problem of a quartically perturbed anharmonic
oscillator. The companion paper [2] details the subsequent hyperasymptotic manipulation for
eigenvalue problems, albeit exemplified by the quartic oscillator. To emphasize the distinction
between these two ingredients, we have split the work accordingly.

The basic idea for this calculation is contained in [8], and is fully developed in section 2:
to match two Borel-summable asymptotic expansions for the wavefunction (built around the
origin and around the outer turning point, respectively) in the intermediate ‘under the barrier’
region. Matching on the first sheet of the coupling constant plane recovers the Borel-summable
RS series, but matching on the second sheet gives a different, more complicated expansion,
which consists of the RS series plus an infinite sequence of successively exponentially smaller
subseries. Both kinds of expansions are required to calculate the discontinuity of the energy.
(Incidentally, in section 2 we give the full matching condition—which was only implicit in
[8]—although we solve it explicitly only up to second-exponentially-small order.) In section 3
we illustrate an indirect but very efficient method for the evaluation of the coefficients of
the main series that appears in the matching condition. We do not have a proof of the
corresponding equation (which was noted in a different context by Hoe et al [9]); we have
checked it up to order 10. Section 4 contains formulae for the coefficients of the rest of the
series as functions of the coefficients of the main series calculated in section 3, as well as
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an analysis of the asymptotic behaviour of these coefficients. This asymptotic behaviour is
necessary to estimate the optimum truncations of the hyperasymptotic series obtained in [2].
The paper ends with a brief summary.

2. Derivation of the discontinuity formulae

The quartic anharmonic oscillator is characterized by the Schrödinger equation[
−1

2

d2

dx2
+

1

2
x2 + gx4 − E(g)

]
ψ(x) = 0 (6)

with boundary conditions ψ(±∞) = 0. The change of variables

σ = x2 (7)

ψ(x) = σ−1/4�(σ) (8)

in the Schrödinger equation (6) yields[
−σ d2

dσ 2
− 3

16σ
+

1

4
σ +

1

2
gσ 2 − 1

2
E(g)

]
�(σ) = 0 (9)

where the transformed boundary conditions are �(0) = �(+∞) = 0. Near the origin, where
the term 1

2gσ
2 becomes negligible, equation (9) reduces to Whittaker’s differential equation

[10], while for large σ we may drop the −3/(16σ) and −E(g)/2 terms, and equation (9)
reduces to Airy’s differential equation [10]. Taking these Whittaker and Airy equations as
unperturbed comparison equations, and using ideas of Langer [11] and Cherry [12], we build
two corresponding asymptotic expansions that have to be matched in the intermediate region.

2.1. Asymptotic expansion anchored at the origin

As discussed in [8], to build the origin-anchored solution we scale the independent variable in
equation (9) by

y = g1/2σ (10)

so that the unperturbed problem near the origin is the harmonic oscillator, the anharmonicity
term is a first-order perturbation in g1/2, and the Schwarzian derivative enters at second order.
We write the Langer–Cherry form of the wavefunction as

�(σ) =
(

dφ0

dy

)−1/2

Mw
2 + 1

4 ,− 1
4 + δ

2

(
g−1/2φ0(y)

)
(11)

where Mκ,µ(σ ) is Whittaker’s confluent hypergeometric function [10] and where δ = 0 for
even solutions and δ = 1 for odd solutions. (The harmonic oscillator wavefunctions are
given by Mn

2 + 1
4 ,− 1

4
(σ ) for n even, and Mn

2 + 1
4 ,

1
4
(σ ) for n odd.) Note also the as yet unspecified

parameter w in the first index of the Whittaker function. We will see that the matching
condition is in fact an equation for this parameter [8, 13, 14].

Substituting equations (10) and (11) into equation (9) we find a differential equation
for φ0(

dφ0

dy

)2 [1

4
− g

3

16

1

φ2
0

− 1

2
g1/2

(
w +

1

2

)
1

φ0

]
= 1

4
− 1

2
g1/2E

y
+

1

2
g1/2y − g

3

16

1

y2

− g

(
dφ0

dy

)1/2 d2

dy2

(
dφ0

dy

)−1/2

. (12)
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We solve this equation by asymptotic expansion of φ0:

φ0(y) ∼
∞∑
N=0

gN/2φ
(N/2)
0 (y) (13)

and of the energy:

E(g) ∼
∞∑
N=0

gN/2E(N/2)
w . (14)

The condition that φ0 be regular at the origin implies that the E(N/2)
w vanish for N odd, and

fixes the values of the E(N/2)
w for N even, which turn out to be polynomials in the unspecified

parameterw [8]. The integrations can be performed explicitly, and for later reference we give
the first two terms of the expansion (13):

φ
(0)
0 (y) = y (15)

φ
(1/2)
0 (y) = 1

2y
2 (16)

and the first four non-vanishing terms of the energy expansion (14)

E(0)
w = w + 1

2 (17)

E(1)
w = 3

2w
2 + 3

2w + 3
4 (18)

E(2)
w = − 17

4 w
3 − 51

8 w
2 − 59

8 w − 21
8 (19)

E(3)
w = 375

16 w
4 + 375

8 w
3 + 177

2 w
2 + 1041

16 w + 333
16 . (20)

2.2. Asymptotic expansion anchored at the outer turning point

Similarly, we build a Langer–Cherry asymptotic expansion anchored at the outer turning point,
except that we scale now

ζ = 2gσ (21)

so that the anharmonic term is of zeroth order in g and the shorter-range terms become the
perturbation [8]. We write the wavefunction in the form

�(σ) = 2π1/2(4g)−1/6

(
dφ∞
dζ

)−1/2

Ai
(
(4g)−2/3φ∞(ζ )

)
(22)

where Ai(z) is Airy’s function [10] and the ζ -independent prefactors simplify the form of the
asymptotic expansions. The resulting differential equation for φ∞ is(

dφ∞
dζ

)2

φ∞ = 1 + ζ − g
4E

ζ
− g2 3

ζ 2
− 16g2

(
dφ∞
dζ

)1/2 d2

dζ 2

(
dφ∞
dζ

)−1/2

(23)

which again we solve by expansion of the energy (equation (14)) and of φ∞ as asymptotic
power series in g

φ∞(ζ ) ∼
∞∑
N=0

gNφ(N)∞ (ζ ). (24)

(Note the consistency of the procedure that follows from the vanishing of the E(N/2)
w for N

odd.) For later reference we give explicitly the first two terms of equation (24)

φ(0)∞ (ζ ) = 1 + ζ (25)

φ(1)∞ (ζ ) = −(2w + 1)(1 + ζ )−1/2 ln

[
1 − (1 + ζ )1/2

1 + (1 + ζ )1/2

]
. (26)

(The parameterw enters φ(1)∞ (ζ ) via the asymptotic expansion of the energy (14) that has been
substituted into equation (23).)
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2.3. Borel-summable asymptotic expansions

The Borel-summable asymptotic expansions for the confluent hypergeometric functions
Mκ,µ(σ ) have been discussed in [15], to which we refer especially for a detailed treatment of
the domains of summability. By making use of the gamma function reflection and duplication
formulae [10], the asymptotic expansion for the origin-anchored wavefunction (11) can be
written as

�(σ) ∼
(

dφ0

dy

)−1/2

e−g1/2φ0/2�

(
1

2
+ δ

)
�

(
1 +

1

2
(w − δ)

)
e∓iπ(w−δ)/2

×
[

2w+1/2

(2π)1/2�(w + 1)

(
g−1/2φ0

) w
2 + 1

4
2F0

(
−w

2
,

1

2
− w

2
; ; −g

1/2

φ0

)

± i

2π

(
e±iπ(w−δ) − 1

)
eg

−1/2φ0
(
g−1/2φ0

)− w
2 − 1

4
2F0

(
1

2
+
w

2
, 1 +

w

2
; ; g

1/2

φ0

)]
(27)

where the upper signs are valid for 0 < arg
(
g−1/2φ0

)
< π and the lower signs for

−π < arg
(
g−1/2φ0

)
< 0. But using equations (10), (15) and (16) we see that

arg
(
g−1/2φ0

) ∼ arg
[
σ +

g

2
σ 2
]

(28)

and if everything else is real

sgn
[
Im
(
g−1/2φ0

)] = sgn[Img]. (29)

Therefore, the upper signs in equation (27) hold for Im g > 0 and the lower signs for Im g < 0.
The asymptotic expansion for the Airy-based wavefunction is slightly more complicated

[8]. If ∣∣arg
(
(4g)−2/3φ∞

)∣∣ < 2π

3
(30)

that is to say, if

|argg| < π (31)

then

�(σ) ∼
(

dφ∞
dζ

)−1/2

φ−1/4
∞ e−(6g)−1φ

3/2
∞

2F0

(
1

6
,

5

6
; ; − 3g

φ
3/2
∞

)
. (32)

However, as soon as

∓arg g = π + ε > π (33)

which for convenience we will write in the form

g = z e∓iπ (arg z = ∓ε) (34)

then

�(σ) ∼
(

dφ∞
dζ

)−1/2

φ−1/4
∞

[
e(6z)

−1φ
3/2
∞

2F0

(
1

6
,

5

6
; ; 3z

φ
3/2
∞

)

± i e−(6z)−1φ
3/2
∞

2F0

(
1

6
,

5

6
; ; − 3z

φ
3/2
∞

)]
. (35)
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2.4. Matching

If |argg| < π , then the asymptotic expansion (32) has a single exponential subseries. To
match the compound asymptotic expansion (27), the second subseries in the latter must
vanish. Therefore we must have e±iπ(w−δ) = 1 in equation (27) or

w = n (n = 0, 1, . . .) (36)

and the asymptotic expansion for the energy (14) takes the form

En(g) ∼
∞∑
j=0

E(j)
n gj ≡ ERS

n (g) (|argg| < π) (37)

which is precisely the Borel-summable power series for En(g). In particular, we recover the
well-known result that the RS coefficientsE(j)

n are polynomials of degree j +1 in the harmonic
oscillator quantum number. We stress, however, that these polynomials have been obtained
from the general asymptotic expansion for the energy (14) by setting w = n.

But if argg = −π − ε < −π and therefore falls in the second quadrant of the next
clockwise sheet, then both exponentials are present in the φ∞ wavefunction, and the matching
process implies an exponentially small contribution to w,

w = n +�w−(n, z) (g = e−iπ z arg z = −ε < 0) (38)

while if arg g = π + ε > π and therefore falls in the third quadrant of the next anticlockwise
sheet, then the matching process implies that

w = n +�w+(n, z) (g = eiπz arg z = ε > 0). (39)

That is, |argg| = π is a Stokes line for the energy eigenvalue: the usual RS expansion changes
to one formally derived from the general RS expansion by replacing n by n +�w∓ depending
on whether the negative axis is crossed in the clockwise or anticlockwise direction.

The matching condition is obtained by equating the ratios of the dominant to the
subdominant terms in the two asymptotic expansions (27) and (35). This condition can
be written in the form [13]

�w∓(n, z) = ∓ i

π
ln [1 + πB(n +�w∓, z)f (n +�w∓, z)]

(40)
(g = e∓iπz arg z = ∓ε ε > 0)

where

B(w, z) = 2πCw(3z)
−w− 1

2 e− 1
3z (41)

Cw = 12w+ 1
2

π
√

2π�(w + 1)
(42)

f (w, z) =
(
φ0

y

)w+ 1
2

exp
[
g−1/2(y − φ0)

]
× exp

[
−(3z)−1

(
φ3/2

∞ − 1 + 3zσ − 3z

(
w +

1

2

)
ln
(zσ

2

))]

×
2F0

(
1
6 ,

5
6 ; ; − 3z

φ
3/2
∞

)
2F0

(
−w

2 ,
1
2 − w

2 ; ; − g1/2

φ0

)
2F0

(
1
6 ,

5
6 ; ; 3z

φ
3/2
∞

)
2F0

(
1
2 + w

2 , 1 + w
2 ; ; g1/2

φ0

) . (43)

A few comments are in order. First note that the even–odd parameter δ has disappeared in
the omitted intermediate transformations, due to the fact that n− δ is always an even integer.
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Second, note that the matching function f (w, z) is independent of σ , and that we have used the
explicit form of the two lowest orders of φ0 and φ∞ to pull out the exponentially small leading
behaviour in the form of the prefactor B(w, z). Using Mathematica, we have implemented
the procedure outlined in this section and calculated f (w, z) as a power series in z through
order z10, with coefficients as polynomials in w. It turns out that the coefficient of zk is a
polynomial in w of degree 2k:

f (w, z) = 1 − z
(

59
24 + 17

4 w + 17
4 w

2
)

+ z2
(− 9011

1152 − 1829
96 w− 95

24w
2 + 39

16w
3 + 289

32 w
4
)

+ O(z3).

(44)

After equation (40) has been solved for�w∓, we can write formally the asymptotic expansion
for the energy En(g) as

En(g) ∼ exp(�w∓∂/∂n)ERS
n (g) (argg = ∓π ∓ ε) (45)

where�w∓ is held constant with respect to ∂/∂n.

2.5. Iterative solution for �w∓(n, z)

Equation (40) permits an iterative solution, which in this paper we carry out explicitly to
second order. Note that B(w, z) contains the exponentially small factor exp[−1/(3z)]. To
keep track of its powers, we introduce a variable of convenience λ, then rewrite equation (40)
and expand�w± in powers of λ (which can be set equal to 1 at the end)

�w∓(n, z) = λ�w
{1}
∓ + λ2�w

{2}
∓ + · · · (46)

= ∓ i

π
ln {1 + π exp(�w∓∂/∂n)[λB(n, z)f (n, z)]} (47)

= ∓λiBf + λ2

(±iπ

2
B2f 2 ∓ i�w{1}

∓
∂

∂n
Bf

)
+ O(λ3). (48)

From equations (46) and (48) we obtain �w{1}
∓ and �w{2}

∓ :

�w
{1}
∓ = ∓iB(n, z)f (n, z) (49)

�w
{2}
∓ = ±i

π

2
B2f 2 − Bf

∂

∂n
Bf (50)

= ± i
π

2
B(n, z)2f (n, z)2 + B(n, z)2

{
f (n, z)2

[
ln
( z

4

)
+ ψ(n + 1)

]

− f (n, z)
∂f (n, z)

∂n

}
. (51)

2.6. Solution for �E{k}
n in terms of �w{j}

∓

The asymptotic expansion for the energy discontinuity is obtained from equations (37) and
(45), with equations (49) and (51) for �w{1}

∓ and �w{2}
∓ . Since the negative g axis is a Stokes

line, the expansions in the second and third quadrants are different. In the second quadrant
arg z = −ε < 0, and g = e−iπz requires equation (45) with the upper sign, while g = e+iπz

requires equation (37)

�En(z) = En(e
−iπz)− En(e

+iπz) (52)

∼ [
exp(�w−(n, z)∂/∂n)− 1

]
ERS
n (−z) (53)
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= �w−
∂

∂n
ERS
n (−z) +

1

2
(�w−)2

∂2

∂n2
ERS
n (−z) + · · · (54)

= λ�w
{1}
−
∂

∂n
ERS
n (−z) + λ2

[
�w

{2}
−
∂

∂n
ERS
n (−z) +

1

2

(
�w

{1}
−
)2 ∂

2

∂n2
ERS
n (−z)

]

+ O(λ3). (55)

In the third quadrant arg z = +ε > 0, and g = e−iπz requires equation (37), while g = e+iπz

requires equation (45) with the lower sign

�En (z) = En(e
−iπz)− En(e

+iπz) (56)

∼ [
1 − exp(�w+(n, z)∂/∂n)

]
ERS
n (−z) (57)

= −λ�w+
∂

∂n
ERS
n (−z)− λ2 1

2
(�w+)

2 ∂
2

∂n2
ERS
n (−z) + · · · (58)

= −λ�w{1}
+
∂

∂n
ERS
n (−z)− λ2

[
�w{2}

+
∂

∂n
ERS
n (−z) +

1

2

(
�w{1}

+

)2 ∂
2

∂n2
ERS
n (−z)

]

+ O(λ3). (59)

Putting the two results together, we find that the first exponentially small correction to the
energy �E{1}

n (z) and the second exponentially small correction to the energy �E{2}
n (z) are

given respectively by

�E{1}
n (z) = ±�w{1}

∓
∂ERS

n (−z)
∂n

(60)

= −iB(n, z)f (n, z)
∂ERS

n (−z)
∂n

(61)

�E{2}
n (z) = ±�w{2}

∓
∂ERS

n (−z)
∂n

± 1

2

[
�w

{1}
∓
]2 ∂2ERS

n (−z)
∂n2

(62)

= i
π

2
B(n, z)2f (n, z)2

∂ERS
n (−z)
∂n

± B(n, z)2
∂ERS

n (−z)
∂n

{
f (n, z)2

[
ln
( z

4

)
+ ψ(n + 1)

]
− f (n, z)

∂f (n, z)

∂n

}

∓ 1

2
B(n, z)2f (n, z)2

∂2ERS
n (−z)
∂n2

(g = e∓iπz arg z = ∓ε ε > 0).

(63)

Note that the expansion �E{1}
n (z) is the same, independent of the sign of arg z. Moreover it

is formally purely imaginary when z is real and positive. It is of the form −iB(n, z) times a
power series in z with constant term b(0)n = 1,

�E{1}
n (z) = −iB(n, z)

∞∑
k=0

b(k)n (3z)
k. (64)

Furthermore, equation (61) provides a direct way to evaluate the coefficients b(k)n .
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The second exponentially small contribution has both a formally real and a formally
imaginary part, which we denote by

�E{2}
n = �E{2,r}

n + i�E{2,i}
n . (65)

The first term of equation (63) is a formula for i�E{2,i}
n (z) that is of the form iπ/2 times

B(n, z)2 times a power series in z with constant term c(0)n = 1,

i�E{2,i}
n (z) = i

π

2

[
2πCn(3z)

−n− 1
2 e− 1

3z

]2 ∞∑
l=0

c(l)n (3z)
l. (66)

The remaining two terms in equation (63) give �E{2,r}
n (z). Note the (±) sign explicit in

�E
{2,r}
n : as Im z passes through 0, the asymptotic expansion �E{2,r}

n (z) has a discontinuous
change in sign:

�E{2,r}
n (z− i0) = −�E{2,r}

n (z + i0) (z > 0). (67)

Except for the sign, the expansions on either side of the real axis are otherwise formally
identical. To avoid sign confusion that could arise when �E{2,r}

n (z ± i0) might appear in a
dispersion relation, we introduce a symbol to denote an expansion that is formally continuous
across the real axis, that coincides with �E{2,r}

n (z) when Im z < 0, but that is −�E{2,r}
n (z)

when Im z > 0:

�E{2,r,−}
n (z) ≡ �E{2,r}

n (z) (Im z < 0) (68)

≡ −�E{2,r}
n (z) (Im z > 0). (69)

The upper sign in equation (63) leads to a formula for the �E{2,r,−}
n :

�E{2,r,−}
n (z) = B(n, z)2

∂ERS
n (−z)
∂n

{
f (n, z)2

[
ln
( z

4

)
+ ψ(n + 1)

]
− f (n, z)

∂f (n, z)

∂n

}

− 1

2
B(n, z)2f (n, z)2

∂2ERS
n (−z)
∂n2

(70)

= B(n, z)2

{[
ln
( z

4

)
+ ψ(n + 1)

] ∞∑
l=0

c(l)n (3z)
l − 1

2

∞∑
l=1

d(l)n (3z)
l

}
. (71)

Once the function f (n, z) has been given, equations (61) and (63) specify the energy
discontinuity through second-exponentially-small order.

2.7. Comment on signs of �E{k,r}
n (z) and �E{k,i}

n (z)

From equations (40)–(45) one can see that �w− and �w+ enjoy a conjugate relationship: for
real g′, and with z = g′ e±iε

�w±(n, z) = [�w∓(n, z∗)]∗ (72)

�w±(n, g′ e±iε) = [�w∓(n, g′ e∓iε)]∗. (73)

Via equations (53) and (57) this implies a conjugate relationship between the expansions for
�En(z),
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�En(g
′eiε) ∼ [1 − exp(�w+(n, g

′ eiε)∂/∂n)]ERS
n (−g′ eiε) (74)

= −[exp(�w−(n, g′ e−iε)∂/∂n)− 1]∗ERS
n (−g′ e−iε)∗ (75)

∼ −�En(g′ e−iε)∗. (76)

In particular, since by definition �E{k,r}
n (z) and �E{k,i}

n (z) are formally real expansions for
real z, it follows that

�E{k}
n (g

′ eiε) = −�E{k}
n (g

′ e−iε)∗ (77)

�E{k,r}
n (g′ eiε) = −�E{k,r}

n (g′ e−iε)∗ (78)

�E{k,i}
n (g′ eiε) = +�E{k,i}

n (g′ e−iε)∗ (79)

and the formally imaginary terms in �E{k}
n will remain unchanged, while the formally real

terms will change sign. That is, the sign of the formally real terms is discontinuous across the
real axis.

3. Evaluation of the power series for f (n, z)

The logarithm of f (n, z) is simpler than f (n, z) in that the coefficient of zk is a polynomial
in n of only degree k + 1 rather than 2k

ln f (n, z) = −z ( 59
24 + 17

4 n + 17
4 n

2
)− z2

(
347
32 + 59

2 n + 375
16 n

2 + 125
8 n

3
)

+ O(z3). (80)

Comparing equation (80) for ln f (n, z) with equations (17)–(20) for the RS expansion, one
notices a remarkable connection,

ln f (n, z) = 1

3

d

dn
E(2)
n z − 1

6

d

dn
E(3)
n z

2 + O(z3). (81)

We have verified through degreeN = 10 in z that (cf [9])

ln f (n, z) =
N∑
k=1

zk
1

3k
(−1)k+1 d

dn
E(k+1)
n + O(zN+1). (82)

Since the RS coefficients E(k+1)
n are far easier to calculate (in terms of computer memory and

time) than the series for f (n, z) directly, we have used equation (82) withN = 50 to calculate
the corresponding terms of ln f (n, z) indirectly.

We remark that all information about En(g) is necessarily contained in the RS energy
coefficients, because the RS series is Borel summable to En(g). That there exists a recipe to
obtain the ln f (n, z) coefficients from the RS coefficients is therefore not unexpected—but
why the recipe is so simple is not obvious.

4. Evaluation of the expansion coefficients b(k)
n , c(k)

n and d(k)
n

An explicit formula for the expansion coefficients b(k)n for �E{1}
n follows from equations (61)

and (64):
∞∑
k=0

b(k)n (3z)
k = f (n, z)

∂ERS
n (−z)
∂n

. (83)

Explicit formulae for the expansion coefficients c(k)n and d(k)n for �E{2}
n follow from

equations (63), (66), and (71):
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Table 1. The coefficients b(k)n .

k b
(k)
n

0 1

1 − 95

72
− 29

12
n− 17

12
n2

2 − 13 259

10 368
− 1733

864
n +

29

108
n2 +

27

16
n3 +

289

288
n4

3 − 8956 043

2239 488
− 1083 329

124 416
n− 635 915

124 416
n2 +

1391

864
n3 +

3923

2304
n4 +

119

3456
n5 − 4913

10 368
n6

Table 2. The coefficients c(k)n .

k c
(k)
n

0 1

1 − 77

36
− 23

6
n− 17

6
n2

2 − 2765

2592
− 59

216
n +

1357

216
n2 +

133

18
n3 +

289

72
n4

3 − 1259 693

279 936
− 105 125

15 552
n− 4961

15 552
n2 +

9275

1296
n3 − 25

9
n4 − 799

144
n5 − 4913

1296
n6

Table 3. The coefficients d(k)n .

k d
(k)
n

0 0

1 − 23

6
− 17

3
n

2 − 59

216
+

1357

108
n +

133

6
n2 +

289

18
n3

3 − 105 125

15 552
− 4961

7776
n +

9275

432
n2 − 100

9
n3 − 3995

144
n4 − 4913

216
n5

∞∑
k=0

c(k)n (3z)
k = f (n, z)2

∂ERS
n (−z)
∂n

(84)

∞∑
k=1

d(k)n (3z)k = 2f (n, z)
∂f (n, z)

∂n

∂ERS
n (−z)
∂n

+ f (n, z)2
∂2ERS

n (−z)
∂n2

(85)

= ∂

∂n

∞∑
k=0

c(k)n (3z)
k. (86)

Equation (86), which is an immediate consequence of equation (85), shows further that the
d(k)n are just the derivatives of the c(k)n with respect to n. The practical evaluation of b(k)n , c(k)n
and d(k)n is based on equation (82) for ln f (n, z). First, the RS expansion for the E(k)

n is carried
out in such a way to obtain the E(k)

n as polynomials (of degree k + 1) in n. Second, f (n, z)
is obtained via exponentiation of equation (82). The rest follows from equations (83), (84)
and (86). Tables 1–3 contain the first few coefficients as explicit functions of n.
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4.1. Asymptotic forms for E(k)
n , b(k)n , c(k)n and d(k)n

It is important to know the leading asymptotic behaviour of E(k)
n , b(k)n , c(k)n and d(k)n with

respect to k, which is required to estimate the optimum truncation of the hyperasymptotic
series obtained in [2].

First note that the leading asymptotic term of the RS coefficient is [8]

E(k)
n ∼ −Cn(−3)k�

(
k + n + 1

2

)
[1 + O(k−1)] (87)

whence

∂E(k)
n

∂n
= −Cn(−3)k�

(
k + n +

1

2

)[
ln

(
k + n +

1

2

)
+ ln 12 − ψ(n + 1) + O(k−1 ln k)

]
.

(88)

From equations (82) and (83), one has
∞∑
k=0

b(k)n (3z)
k ∼ ∂ERS

n (−z)
∂n

exp

[ ∞∑
l=1

(−1)l+1 z
l

3l

dE(l+1)
n

dn

]
(89)

from which it follows that

b(k)n = −2Cn�
(
k + n + 1

2

) [
ln
(
k + n + 1

2

)
+ ln 12 − ψ(n + 1) + O(k−1 ln k)

]
(90)

c(k)n = −3Cn�
(
k + n + 1

2

) [
ln
(
k + n + 1

2

)
+ ln 12 − ψ(n + 1) + O(k−1 ln k)

]
(91)

d(k)n = −3Cn�
(
k + n + 1

2

) {[
ln
(
k + n + 1

2

)
+ ln 12 − ψ(n + 1)

]2
+ O(k−1(ln k)2)

}
. (92)

Equations (87) and (90)–(92) have been put in as similar form as possible by exploiting the
flexibility of the O(k−1 ln k). The 3:2 asymptotic ratio of c(k)n to b(k)n is apparent in tables 4
and 5.

5. Summary

In the companion paper [2] we discuss the derivation of higher-level dispersion relations for the
quartic anharmonic oscillator. These dispersion relations are driven by the purely imaginary
discontinuity of the energy across the negative coupling-constant axis, and in this paper we
have calculated explicitly up to second-exponentially-small order the asymptotic expansion of
this discontinuity.

The main steps of the derivation are given in section 2. The first step is to match
asymptotic wavefunctions based on the Whittaker confluent hypergeometric function at the
origin and on the Airy function near the outer turning point. Matching on the ‘first sheet’ of
the coupling constant complex plane yields the Borel-summable RS series. Matching on the
‘second sheet’ gives the RS series with a small shift in the oscillator quantum number as it
enters the formulae for the RS coefficients. This shift �w satisfies equation (40), obtained
from the match, and it can be found iteratively as the sum of successively exponentially smaller
subseries (equations (46)–(51)). The second step is to plug these formulae for �w into the
‘shifted’ RS series to obtain formulae for �E{1}

n (z) and �E{2}
n (z) (equations (61) and (63)).

The resulting asymptotic expansion for �E{1}
n (z) is formally purely imaginary for z real. The

asymptotic expansion for �E{2}
n (z) contains formally real series, as well as imaginary, but

the sign of the formally real terms changes discontinuously on the positive real z axis, an
interesting and essential fact. Explicit recipes for the coefficients b(k)n , c(k)n and d(k)n that enter
these series are given in section 4 after evaluation of f (n, z) in section 3.
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Table 4. Coefficients E(k)0 , b(k)0 , c(k)0 and d(k)0 for the n = 0 ground state.

k (−1)k+1E
(k)
0 −b(k)0 −c(k)0 −d(k)0

0 −0.5 −1.0 −1.0 0.0
1 0.75 1.319 444 2.138 889 3.833 333
2 2.625 1.278 839 1.066 744 0.273 148
3 2.081 25 × 101 3.999 148 4.499 932 6.759 581
4 2.412 891 × 102 1.780 162 × 101 2.091 950 × 101 5.021 742 × 101

5 3.580 980 × 103 9.864 511 × 101 1.224 627 × 102 3.372 231 × 102

6 6.398 281 × 104 6.437 460 × 102 8.175 298 × 102 2.654 708 × 103

7 1.329 734 × 106 4.803 501 × 103 6.273 846 × 103 2.211 347 × 104

8 3.144 821 × 107 4.024 606 × 104 5.334 306 × 104 2.060 674 × 105

9 8.335 416 × 108 3.739 607 × 105 5.043 387 × 105 2.054 751 × 106

10 2.447 894 × 1010 3.818 256 × 106 5.200 175 × 106 2.246 345 × 107

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

45 2.240 859 × 1076 1.015 741 × 1056 1.495 963 × 1056 9.719 427 × 1056

46 3.060 931 × 1078 4.642 470 × 1057 6.838 813 × 1057 4.463 606 × 1058

47 4.272 878 × 1080 2.168 189 × 1059 3.195 840 × 1059 2.092 655 × 1060

48 6.092 777 × 1082 1.034 259 × 1061 1.524 755 × 1061 1.002 742 × 1062

49 8.870 460 × 1084 5.036 817 × 1062 7.429 586 × 1062 4.901 004 × 1063

50 1.318 042 × 1087 2.503 201 × 1064 3.692 988 × 1064 2.446 113 × 1065

Table 5. Coefficients E(k)1 , b(k)1 , c(k)1 and d(k)1 for the n = 1 first excited state.

k (−1)k+1E
(k)
1 −b(k)1 −c(k)1 −d(k)1

0 −1.5 −1.0 −1.0 0.0
1 3.75 5.152 778 8.805 556 9.5
2 −2.062 5 × 101 0.325 135 −1.634 529 × 101 −5.051 388 9 × 101

3 2.446 875 × 102 1.494 444 × 101 1.653 916 × 101 4.752 720 × 101

4 4.066 289 × 103 1.142 670 × 102 8.098 048 × 101 5.329 175 × 101

5 8.322 064 × 104 9.663 260 × 102 7.633 385 × 102 8.550 329 × 102

6 1.979 440 × 106 9.045 594 × 103 7.738 320 × 103 1.166 120 × 104

7 5.302 892 × 107 9.249 919 × 104 8.409 585 × 104 1.556 337 × 105

8 1.570 097 × 109 1.022 762 × 106 9.763 672 × 105 2.106 882 × 106

9 5.075 057 × 1010 1.213 969 × 107 1.206 855 × 107 2.937 931 × 107

10 1.775 710 × 1012 1.538 884 × 108 1.583 563 × 108 4.250 134 × 108

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

45 1.118 461 × 1079 4.022 325 × 1058 5.550 160 × 1058 3.026 516 × 1059

46 1.564 577 × 1081 1.886 953 × 1060 2.608 567 × 1060 1.430 122 × 1061

47 2.235 423 × 1083 9.039 524 × 1061 1.251 882 × 1062 6.899 112 × 1062

48 3.260 770 × 1085 4.420 245 × 1063 6.132 083 × 1063 3.396 451 × 1064

49 4.853 967 × 1087 2.205 396 × 1065 3.064 509 × 1065 1.705 686 × 1066

50 7.370 811 × 1089 1.122 267 × 1067 1.561 902 × 1067 8.734 727 × 1067

The function f (n, z), the first few terms of which are given by equation (80), is a power
series in z whose coefficients are polynomials in n that arise from the match of the Whittaker
and Airy-based solutions. Its extraction is complicated. That ln f (n, z) has such a simple
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relationship to the derivative of the RS series (see equation (82)) is both remarkable and what
made possible our calculation of the b(k)n , c(k)n and d(k)n coefficients to high order.

These results for b(k)n , c(k)n and d(k)n are used in the companion paper [2] to exemplify how
hyperasymptotics can be applied to derive exponentially improved asymptotic approximations
to the eigenvalues of oscillator systems.
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